Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.264
Filtrar
1.
Addict Biol ; 29(5): e13393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706098

RESUMO

Opioid addiction is a relapsing disorder marked by uncontrolled drug use and reduced interest in normally rewarding activities. The current study investigated the impact of spontaneous withdrawal from chronic morphine exposure on emotional, motivational and cognitive processes involved in regulating the pursuit and consumption of food rewards in male rats. In Experiment 1, rats experiencing acute morphine withdrawal lost weight and displayed somatic signs of drug dependence. However, hedonically driven sucrose consumption was significantly elevated, suggesting intact and potentially heightened reward processing. In Experiment 2, rats undergoing acute morphine withdrawal displayed reduced motivation when performing an effortful response for palatable food reward. Subsequent reward devaluation testing revealed that acute withdrawal disrupted their ability to exert flexible goal-directed control over reward seeking. Specifically, morphine-withdrawn rats were impaired in using current reward value to select actions both when relying on prior action-outcome learning and when given direct feedback about the consequences of their actions. In Experiment 3, rats tested after prolonged morphine withdrawal displayed heightened rather than diminished motivation for food rewards and retained their ability to engage in flexible goal-directed action selection. However, brief re-exposure to morphine was sufficient to impair motivation and disrupt goal-directed action selection, though in this case, rats were only impaired in using reward value to select actions in the presence of morphine-paired context cues and in the absence of response-contingent feedback. We suggest that these opioid-withdrawal induced deficits in motivation and goal-directed control may contribute to addiction by interfering with the pursuit of adaptive alternatives to drug use.


Assuntos
Objetivos , Morfina , Motivação , Recompensa , Síndrome de Abstinência a Substâncias , Animais , Síndrome de Abstinência a Substâncias/psicologia , Motivação/efeitos dos fármacos , Masculino , Morfina/farmacologia , Ratos , Dependência de Morfina/psicologia , Entorpecentes/farmacologia , Condicionamento Operante/efeitos dos fármacos
2.
Cogn Affect Behav Neurosci ; 24(2): 269-278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168850

RESUMO

Translation of drug targets from preclinical studies to clinical trials has been aided by cross-species behavioral tasks, but evidence for brain-based engagement during task performance is still required. Cross-species progressive ratio breakpoint tasks (PRBTs) measure motivation-related behavior and are pharmacologically and clinically sensitive. We recently advanced elevated parietal alpha power as a cross-species electroencephalographic (EEG) biomarker of PRBT engagement. Given that amphetamine increases breakpoint in mice, we tested its effects on breakpoint and parietal alpha power in both humans and mice. Twenty-three healthy participants performed the PRBT with EEG after amphetamine or placebo in a double-blind design. C57BL/6J mice were trained on PRBT with EEG (n = 24) and were treated with amphetamine or vehicle. A second cohort of mice was trained on PRBT without EEG (n = 40) and was treated with amphetamine or vehicle. In humans, amphetamine increased breakpoint. In mice, during concomitant EEG, 1 mg/kg of amphetamine significantly decreased breakpoint. In cohort 2, however, 0.3 mg/kg of amphetamine increased breakpoint consistent with human findings. Increased alpha power was observed in both species as they reached breakpoint, replicating previous findings. Amphetamine did not affect alpha power in either species. Amphetamine increased effort in humans and mice. Consistent with previous reports, elevated parietal alpha power was observed in humans and mice as they performed the PRBT. Amphetamine did not affect this EEG biomarker of effort. Hence, these findings support the pharmacological predictive validity of the PRBT to measure effort in humans and mice and suggest that this EEG biomarker is not directly reflective of amphetamine-induced changes in effort.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Eletroencefalografia , Camundongos Endogâmicos C57BL , Motivação , Anfetamina/farmacologia , Humanos , Animais , Masculino , Eletroencefalografia/efeitos dos fármacos , Adulto , Adulto Jovem , Método Duplo-Cego , Motivação/efeitos dos fármacos , Motivação/fisiologia , Feminino , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Camundongos , Ritmo alfa/efeitos dos fármacos , Ritmo alfa/fisiologia
3.
Sci Adv ; 9(24): eadd4165, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315143

RESUMO

The efficacy of pharmaceutical cognitive enhancers in everyday complex tasks remains to be established. Using the knapsack optimization problem as a stylized representation of difficulty in tasks encountered in daily life, we discover that methylphenidate, dextroamphetamine, and modafinil cause knapsack value attained in the task to diminish significantly compared to placebo, even if the chance of finding the optimal solution (~50%) is not reduced significantly. Effort (decision time and number of steps taken to find a solution) increases significantly, but productivity (quality of effort) decreases significantly. At the same time, productivity differences across participants decrease, even reverse, to the extent that above-average performers end up below average and vice versa. The latter can be attributed to increased randomness of solution strategies. Our findings suggest that "smart drugs" increase motivation, but a reduction in quality of effort, crucial to solve complex problems, annuls this effect.


Assuntos
Estimulantes do Sistema Nervoso Central , Cognição , Motivação , Humanos , Cognição/efeitos dos fármacos , Metilfenidato/farmacologia , Modafinila/farmacologia , Motivação/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia
4.
Appetite ; 186: 106556, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044175

RESUMO

Overconsumption of sugar contributes to obesity in part by changing the activity of brain areas that drive the motivation to seek out and consume food. Sugar-sweetened beverages are the most common source of excess dietary sugar and contribute to weight gain. However, very few studies have assessed the effects of liquid sucrose consumption on motivation. This is due in part to the need for novel approaches to assess motivation in pre-clinical models. To address this, we developed a within-session behavioral economics procedure to assess motivation for liquid sucrose. We first established and validated the procedure: we tested several sucrose concentrations, evaluated sensitivity of the procedure to satiety, and optimized several testing parameters. We then applied this new procedure to determine how intermittent vs. continuous access to liquid sucrose (1 M) in the home cage affects sucrose motivation. We found that intermittent liquid sucrose access results in an escalation of sucrose intake in the home cage, without altering motivation for liquid sucrose during demand testing (1 M or 0.25 M) compared to water-maintained controls. In contrast, continuous home cage access selectively blunted motivation for 1 M sucrose, while motivation for 0.25 M sucrose was similar to intermittent sucrose and control groups. Thus, effects of continuous home cage liquid sucrose access were selective to the familiar sucrose concentration. Finally, effects of sucrose on motivation recovered after removal of liquid sucrose from the diet. These data provide a new approach to examine motivation for liquid sucrose and show that escalation of intake and motivation for sucrose are dissociable processes.


Assuntos
Sacarose Alimentar , Economia Comportamental , Motivação , Motivação/efeitos dos fármacos , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/química , Sacarose Alimentar/farmacologia , Ratos Sprague-Dawley , Masculino , Animais , Ratos , Reprodutibilidade dos Testes , Resposta de Saciedade/efeitos dos fármacos , Abrigo para Animais , Fome
5.
Behav Pharmacol ; 34(1): 12-19, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730812

RESUMO

Varenicline (Chantix) is an FDA-approved smoking cessation aid that is pharmacologically similar to nicotine, the primary addictive component found within tobacco. In support of this similarity, previous drug discrimination research in rats has reported that the internal or interoceptive stimulus effects of nicotine and varenicline share stimulus elements. Those shared elements appear to be mediated, in part, by overlapping action at alpha4beta2-containing nicotinic acetylcholine receptors (nAChRs). The research supporting this conclusion, however, has only used nicotine, and not varenicline, as the training drug. Accordingly, we used the discriminated goal tracking (DGT) task in which 1 mg/kg varenicline signaled intermittent access to sucrose. On separate intermixed saline days, sucrose was not available. Rats acquired the discrimination as measured by a differential increase in dipper entries (goal tracking) evoked by varenicline. These rats then received a series of tests with several doses of varenicline, nicotine, nornicotine (a metabolite of nicotine and tobacco alkaloid), sazetidine-A (a partial alpha4beta2 agonist), PHA-543613 (an alpha7 agonist), and bupropion (a norepinephrine and dopamine reuptake inhibitor). Control of goal tracking by varenicline was dose-dependent. Nicotine and nornicotine evoked responding comparable to the varenicline training dose indicating full substitution. Sazetidine-A partially substituted for the varenicline stimulus, whereas bupropion and PHA-543613 evoked little to no varenicline-like responding. These findings indicate that varenicline can serve as the training stimulus in the DGT task. Further, stimulus control of varenicline in the DGT task is driven by its partial agonist activity at alpha4beta2-containing nAChRs. The use of this approach could lead to a better understanding of the pharmacological action of varenicline and help guide treatment geared towards tobacco cessation through a more targeted development of novel synthetically designed, subunit-specific pharmacological interventions.


Assuntos
Motivação , Receptores Nicotínicos , Agentes de Cessação do Hábito de Fumar , Vareniclina , Animais , Ratos , Benzazepinas/farmacologia , Bupropiona , Objetivos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Quinoxalinas/farmacologia , Receptores Nicotínicos/metabolismo , Vareniclina/farmacologia , Agentes de Cessação do Hábito de Fumar/farmacologia , Motivação/efeitos dos fármacos
6.
J Neurosci ; 43(3): 472-483, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36639890

RESUMO

Social deficits and dysregulations in dopaminergic midbrain-striato-frontal circuits represent transdiagnostic symptoms across psychiatric disorders. Animal models suggest that interactions between the dopamine (DA) and renin-angiotensin system (RAS) may modulate learning and reward-related processes. The present study therefore examined the behavioral and neural effects of the Angiotensin II type 1 receptor (AT1R) antagonist losartan on social reward and punishment processing in humans. A preregistered randomized double-blind placebo-controlled between-subject pharmacological design was combined with a social incentive delay (SID) functional MRI (fMRI) paradigm during which subjects could avoid social punishment or gain social reward. Healthy volunteers received a single-dose of losartan (50 mg, n = 43, female = 17) or placebo (n = 44, female = 20). We evaluated reaction times (RTs) and emotional ratings as behavioral and activation and functional connectivity as neural outcomes. Relative to placebo, losartan modulated the reaction time and arousal differences between social punishment and social reward. On the neural level the losartan-enhanced motivational salience of social rewards was accompanied by stronger ventral striatum-prefrontal connectivity during reward anticipation. Losartan increased the reward-neutral difference in the ventral tegmental area (VTA) and attenuated VTA associated connectivity with the bilateral insula in response to punishment during the outcome phase. Thus, losartan modulated approach-avoidance motivation and emotional salience during social punishment versus social reward via modulating distinct core nodes of the midbrain-striato-frontal circuits. The findings document a modulatory role of the renin-angiotensin system in these circuits and associated social processes, suggesting a promising treatment target to alleviate social dysregulations.SIGNIFICANCE STATEMENT Social deficits and anhedonia characterize several mental disorders and have been linked to the midbrain-striato-frontal circuits of the brain. Based on initial findings from animal models we here combine the pharmacological blockade of the Angiotensin II type 1 receptor (AT1R) via losartan with functional MRI (fMRI) to demonstrate that AT1R blockade enhances the motivational salience of social rewards and attenuates the negative impact of social punishment via modulating the communication in the midbrain-striato-frontal circuits in humans. The findings demonstrate for the first time an important role of the AT1R in social reward processing in humans and render the AT1R as promising novel treatment target for social and motivational deficits in mental disorders.


Assuntos
Losartan , Mesencéfalo , Motivação , Animais , Feminino , Humanos , Angiotensinas/antagonistas & inibidores , Dopamina/farmacologia , Losartan/farmacologia , Imageamento por Ressonância Magnética , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/efeitos dos fármacos , Motivação/efeitos dos fármacos , Punição/psicologia , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Recompensa
7.
Neurosci Lett ; 797: 137069, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36641044

RESUMO

Previous research has demonstrated that dopamine and Neuropeptide Y (NPY) promote motivated behavior, and there is evidence to suggest that they interact within neural circuitry involved in motivation. NPY and dopamine both modulate appetitive motivation towards food through direct actions in the nucleus accumbens (NAc), although how they interact in this region to promote motivation is presently unclear. In this study, we sought to further elucidate the relationship between NAc NPY and dopamine and their effects on motivated behavior. Specifically, we examined whether NAc injections of NPY might reverse behavioral deficits caused by reduced dopamine signaling due to systemic dopamine receptor antagonism. Appetitive motivation was measured using a progressive ratio-2 paradigm. Male Sprague Dawley rats were treated with systemic injections of the dopamine antagonist, α-flupenthixol or a saline vehicle. Two hours following injections, they were administered infusions of NPY (at 0, 156, or 235 pmol) into either the NAc shell (n = 12) or the NAc core (n = 10) and were placed in operant chambers. In both groups, α-flupenthixol impaired performance on the PR-2 task. NPY receptor stimulation of the NAc shell significantly increased both breakpoint and active lever presses during the PR-2 task, and dose-dependently increased responding following systemic dopamine receptor blockade. NPY did not affect appetitive motivation when injected into the NAc core. These data demonstrate that NPY in the NAc shell can improve motivational impairments that result from dopamine antagonism, and that these effects are site specific. These results also suggest that upregulation of NPY in neurodegenerative diseases may possibly buffer early motivational deficits caused by dopamine depletion in Parkinson's and Huntington's disease patients, both of which show increased NPY expression after disease onset.


Assuntos
Antagonistas de Dopamina , Dopamina , Flupentixol , Motivação , Neuropeptídeo Y , Núcleo Accumbens , Animais , Masculino , Ratos , Dopamina/fisiologia , Antagonistas de Dopamina/farmacologia , Flupentixol/farmacologia , Motivação/efeitos dos fármacos , Neuropeptídeo Y/administração & dosagem , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/fisiologia , Núcleo Accumbens/metabolismo , Ratos Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/psicologia , Doença de Huntington/metabolismo , Doença de Huntington/psicologia
8.
Mol Psychiatry ; 27(12): 4948-4958, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36138127

RESUMO

Social anhedonia, a loss of interest and pleasure in social interactions, is a common symptom of major depression as well as other psychiatric disorders. Depression can occur at any age, but typically emerges in adolescence or early adulthood, which represents a sensitive period for social interaction that is vulnerable to stress. In this study, we evaluated social interaction reward using a conditioned place preference (CPP) paradigm in adolescent male and female mice. Adolescent mice of both sexes exhibited a preference for the social interaction-associated context. Chronic unpredictable stress (CUS) impaired the development of CPP for social interaction, mimicking social anhedonia in depressed adolescents. Conversely, administration of leptin, an adipocyte-derived hormone, enhanced social interaction-induced CPP in non-stressed control mice and reversed social anhedonia in CUS mice. By dissecting the motivational processes of social CPP into social approach and isolation avoidance components, we demonstrated that leptin treatment increased isolation aversion without overt social reward effect. Further mechanistic exploration revealed that leptin stimulated oxytocin gene transcription in the paraventricular nucleus of the hypothalamus, while oxytocin receptor blockade abolished the leptin-induced enhancement of socially-induced CPP. These results establish that chronic unpredictable stress can be used to study social anhedonia in adolescent mice and provide evidence that leptin modulates social motivation possibly via increasing oxytocin synthesis and oxytocin receptor activation.


Assuntos
Anedonia , Leptina , Motivação , Animais , Feminino , Masculino , Camundongos , Anedonia/efeitos dos fármacos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Leptina/farmacologia , Leptina/uso terapêutico , Motivação/efeitos dos fármacos , Ocitocina , Receptores de Ocitocina , Recompensa , Estresse Psicológico/complicações
9.
Biomolecules ; 12(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35883437

RESUMO

Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson's and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Motivação/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ratos
10.
Addict Biol ; 27(1): e13103, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647651

RESUMO

Long-term opioid abuse causes a variety of long-lasting cognitive impairments such as attention, impulsivity and working memory. These cognitive impairments undermine behavioural treatment for drug abuse and lead to poor treatment retention and outcomes. Modafinil is a wake-promoting drug that shows potential in improving attention and memory in humans and animals. However, modafinil's effect on opioid-induced cognitive impairments remains unclear, and the underlying mechanism is poorly understood. This study showed that repeated morphine administration significantly impairs attention, increases impulsivity and reduces motivation to natural rewards in mice. Systemic modafinil treatment at low dose efficiently ameliorates morphine-induced attention dysfunction and improves motivation and working memory in mice. High dose of modafinil has adverse effects on impulsive action and attention. Local infusion of D1R antagonist SCH-23390 reverses the morphine-induced synaptic abnormalities and activation of the D1R-ERK-CREB pathway in medial prefrontal cortex (mPFC). This study demonstrated a protective effect of modafinil in mPFC neurons and offered a therapeutic potential for cognitive deficits in opioid abuse.


Assuntos
Atenção/efeitos dos fármacos , Transtornos Cognitivos/fisiopatologia , Modafinila/farmacologia , Morfina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Transtornos Cognitivos/induzido quimicamente , Relação Dose-Resposta a Droga , Comportamento Impulsivo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Modafinila/administração & dosagem , Modafinila/efeitos adversos , Motivação/efeitos dos fármacos
11.
Neuropsychopharmacology ; 47(11): 1875-1882, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34916591

RESUMO

The nucleus accumbens shell (NAcSh) and its afferent and efferent neuronal projections control key aspects of motivation for cocaine. A recently described regulator of γ-aminobutyric acid (GABA) projections from the dorsal raphe nucleus (DRN) to the NAcSh (DRN → NAcSh) is the neuropeptide neuromedin U (NMU). Here, we find that systemic administration of NMU decreases breakpoint for cocaine on a progressive ratio schedule of reinforcement in male rats. Employing a retrograde adeno-associated virus (AAV), we found that RNAi-mediated knockdown of the NMU receptor 2 (NMUR2) in afferent DRN projections to the NAcSh increases the breakpoint for cocaine. Our previous studies demonstrated that NMU regulates GABA release in the NAcSh, and our current investigation found that systemic NMU administration suppresses cocaine-evoked GABA release in the NAcSh and increases phosphorylated c-Fos expression in neurons projecting from the NAcSh to the ventral pallidum (VP). To further probe the impact of NMU/NMUR2 on neuroanatomical pathways regulating motivation for cocaine, we employed multi-viral transsynaptic studies. Using a combination of rabies virus and retrograde AAV helper virus, we mapped the impact of NMU across three distinct brain regions simultaneously and found a direct connection of GABAergic DRN neurons to the NAcSh → VP pathway. Together, these data reveal that NMU/NMUR2 modulates a direct connection within the GABAergic DRN → NAcSh → VP circuit that diminishes breakpoints for cocaine. These findings importantly advance our understanding of the neurochemical underpinnings of pathway-specific regulation of neurocircuitry that may regulate cocaine self-administration, providing a unique therapeutic perspective.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Neuropeptídeos , Núcleo Accumbens , Automedicação , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/administração & dosagem , Cocaína/farmacologia , Masculino , Motivação/efeitos dos fármacos , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Automedicação/psicologia , Ácido gama-Aminobutírico/metabolismo
12.
Neurotoxicology ; 88: 124-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793781

RESUMO

Reward motivation is a complex umbrella term encompassing the cognitions, emotions, and behaviors involved in the activation, execution, and persistence of goal-directed behavior. Altered reward motivation in children is characteristic of many neurodevelopmental and psychiatric disorders. Previously difficult to operationalize, the Progressive Ratio (PR) task has been widely used to assess reward motivation in animal and human studies, including children. Because the neural circuitry supporting reward motivation starts developing during pregnancy, and is sensitive to disruption by environmental toxicants, including metals, the goal of this study was to examine the association between prenatal concentrations of a mixture of neurotoxic metals and reward motivation in children. We measured reward motivation by administering a PR test to 373 children ages 6-8 years enrolled in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) Study in Mexico City. Children were asked to press a response lever for a token reward; one press on the response lever was required to earn the first token and each subsequent token required an additional 10 lever presses. Maternal blood concentrations of lead, manganese, zinc, arsenic, cadmium, and selenium were measured using inductively-coupled plasma mass spectrometry during the 2nd and 3rd trimesters of pregnancy. We performed generalized Weighted Quantile Sum (gWQS) regression analyses to examine associations between the prenatal metal mixture and reward motivation; adjusting for child sex, birthweight and age; and maternal IQ, education, and socioeconomic status. The prenatal metal mixture was significantly associated with higher motivation as indicated by more lever presses (ß = 0.02, p < 0.001) and a shorter time between receiving the reinforcer and the first press (ß = 0.23, p = 0.01), and between subsequent presses (ß = 0.07, p = 0.005). Contributions of different metals to this association differed by trimester and child sex. These findings suggest that children with increased exposure to metal during the 2nd and 3rd trimesters of gestation demonstrate increased reward motivation, which may reflect a tendency to perseverate or hypersensitivity to positive reinforcement.


Assuntos
Metais Pesados/sangue , Motivação/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Recompensa , Arsênio/sangue , Peso ao Nascer/efeitos dos fármacos , Cádmio/sangue , Criança , Feminino , Humanos , Chumbo/sangue , Masculino , Manganês/sangue , Testes de Estado Mental e Demência , Metais Pesados/efeitos adversos , Gravidez/sangue , Selênio/sangue , Zinco/sangue
13.
Sci Rep ; 11(1): 23589, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880300

RESUMO

Oxytocin (OT) plays a pivotal role in a variety of complex social behaviors by modulating approach-avoidance motivational tendencies, but recently, its social specificity has been challenged. Here, a randomized, double-blind, placebo-controlled study was conducted with forty young adult men, investigating the effect of a single-dose of OT (24 IU) on behavioral and neural approach-avoidance. Frontal alpha asymmetry, indexing neurophysiological approach-avoidance, was obtained from electroencephalographic recordings while participants were presented with a series of pictures, individually rated in terms of personal relevance (i.e., high versus low positive/negative emotional evocativeness) and categorized as social or non-social. Additionally, participants could prolong (approach) or shorten (avoid) the viewing-time of each picture, providing a measure of behavioral approach-avoidance. Intranasal OT enhanced both behavioral and neural approach (increased viewing-time), particularly towards negatively valenced pictures of both social and non-social nature, thus challenging the notion that OT's effects are specific to social stimuli. Neurally, OT specifically amplified approach-related motivational salience of stimuli that were self-rated to have high personal relevance, but irrespective of their social nature or rated affective valence (positive/negative). Together, these findings provide support to the General Approach-Avoidance Hypothesis of OT, suggesting a role of OT in amplifying the motivational salience of environmental stimuli with high (personal) relevance, but irrespective of their social/non-social nature.Clinical Trial Number: The study design was registered at ClinicalTrials.gov (NCT04443647; 23/06/2020; https://clinicaltrials.gov/ct2/show/NCT04443647 ).


Assuntos
Comportamento/efeitos dos fármacos , Ocitocina/administração & dosagem , Administração Intranasal , Método Duplo-Cego , Emoções/efeitos dos fármacos , Humanos , Masculino , Motivação/efeitos dos fármacos , Comportamento Social , Adulto Jovem
14.
Sci Rep ; 11(1): 22479, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795334

RESUMO

The use of psychedelic substances at sub-sensorium 'microdoses', has gained popular academic interest for reported positive effects on wellness and cognition. The present study describes microdosing practices, motivations and mental health among a sample of self-selected microdosers (n = 4050) and non-microdosers (n = 4653) via a mobile application. Psilocybin was the most commonly used microdose substances in our sample (85%) and we identified diverse microdose practices with regard to dosage, frequency, and the practice of stacking which involves combining psilocybin with non-psychedelic substances such as Lion's Mane mushrooms, chocolate, and niacin. Microdosers were generally similar to non-microdosing controls with regard to demographics, but were more likely to report a history of mental health concerns. Among individuals reporting mental health concerns, microdosers exhibited lower levels of depression, anxiety, and stress across gender. Health and wellness-related motives were the most prominent motives across microdosers in general, and were more prominent among females and among individuals who reported mental health concerns. Our results indicate health and wellness motives and perceived mental health benefits among microdosers, and highlight the need for further research into the mental health consequences of microdosing including studies with rigorous longitudinal designs.


Assuntos
Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Motivação/efeitos dos fármacos , Psilocibina/administração & dosagem , Adolescente , Adulto , Cognição/efeitos dos fármacos , Estudos Transversais , Feminino , Alucinógenos/administração & dosagem , Humanos , Cooperação Internacional , Dietilamida do Ácido Lisérgico/administração & dosagem , Masculino , Saúde Mental , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
15.
Elife ; 102021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761749

RESUMO

Theoretical accounts distinguish between motivational ('wanting') and hedonic ('liking') dimensions of rewards. Previous animal and human research linked wanting and liking to anatomically and neurochemically distinct brain mechanisms, but it remains unknown how the different brain regions and neurotransmitter systems interact in processing distinct reward dimensions. Here, we assessed how pharmacological manipulations of opioid and dopamine receptor activation modulate the neural processing of wanting and liking in humans in a randomized, placebo-controlled, double-blind clinical trial. Reducing opioid receptor activation with naltrexone selectively reduced wanting of rewards, which on a neural level was reflected by stronger coupling between dorsolateral prefrontal cortex and the striatum under naltrexone compared with placebo. In contrast, reducing dopaminergic neurotransmission with amisulpride revealed no robust effects on behavior or neural activity. Our findings thus provide insights into how opioid receptors mediate neural connectivity related to specifically motivational, not hedonic, aspects of rewards.


Assuntos
Motivação/efeitos dos fármacos , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Adulto , Amissulprida/farmacologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Córtex Pré-Frontal Dorsolateral/efeitos dos fármacos , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Recompensa
16.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360704

RESUMO

The activation of the endocannabinoid system controls the release of many neurotransmitters involved in the brain reward pathways, including glutamate. Both endocannabinoid and glutamate systems are crucial for alcohol relapse. In the present study, we hypothesize that N-methyl-D-aspartate (NMDA) glutamate receptors regulate the ability of a priming dose of WIN 55,212-2 to cross-reinstate ethanol-induced conditioned place preference (CPP). To test this hypothesis, ethanol-induced (1.0 g/kg, 10% w/v, i.p.) CPP (unbiased method) was established using male adult Wistar rats. After CPP extinction, one group of animals received WIN 55,212-2 (1.0 and 2.0 mg/kg, i.p.), the cannabinoid receptor 1 (CB1) agonist, or ethanol, and the other group received memantine (3.0 or 10 mg/kg, i.p.), the NMDA antagonist and WIN 55,212-2 on the reinstatement day. Our results showed that a priming injection of WIN 55,212-2 (2.0 mg/kg, i.p.) reinstated (cross-reinstated) ethanol-induced CPP with similar efficacy to ethanol. Memantine (3.0 or 10 mg/kg, i.p.) pretreatment blocked this WIN 55,212-2 effect. Furthermore, our experiments indicated that ethanol withdrawal (7 days withdrawal after 10 days ethanol administration) down-regulated the CNR1 (encoding CB1), GRIN1/2A (encoding GluN1 and GluN2A subunit of the NMDA receptor) genes expression in the prefrontal cortex and dorsal striatum, but up-regulated these in the hippocampus, confirming the involvement of these receptors in ethanol rewarding effects. Thus, our results show that the endocannabinoid system is involved in the motivational properties of ethanol, and glutamate may control cannabinoid induced relapse into ethanol seeking behavior.


Assuntos
Benzoxazinas/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Etanol/farmacologia , Memantina/farmacologia , Morfolinas/farmacologia , Motivação/efeitos dos fármacos , Naftalenos/farmacologia , Animais , Masculino , Ratos , Ratos Wistar
17.
Front Neural Circuits ; 15: 699798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366795

RESUMO

The Medial Septum and diagonal Band of Broca (MSDB) was initially studied for its role in locomotion. However, the last several decades were focussed on its intriguing function in theta rhythm generation. Early studies relied on electrical stimulation, lesions and pharmacological manipulation, and reported an inconclusive picture regarding the role of the MSDB circuits. Recent studies using more specific methodologies have started to elucidate the differential role of the MSDB's specific cell populations in controlling both theta rhythm and behaviour. In particular, a novel theory is emerging showing that different MSDB's cell populations project to different brain regions and control distinct aspects of behaviour. While the majority of these behaviours involve movement, increasing evidence suggests that MSDB-related networks govern the motivational aspect of actions, rather than locomotion per se. Here, we review the literature that links MSDB, theta activity, and locomotion and propose open questions, future directions, and methods that could be employed to elucidate the diverse roles of the MSDB-associated networks.


Assuntos
Locomoção/fisiologia , Motivação/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Núcleos Septais/fisiologia , Ritmo Teta/fisiologia , Animais , Feixe Diagonal de Broca/efeitos dos fármacos , Feixe Diagonal de Broca/fisiologia , Agonistas GABAérgicos/farmacologia , Humanos , Locomoção/efeitos dos fármacos , Motivação/efeitos dos fármacos , Movimento/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Ritmo Teta/efeitos dos fármacos
18.
Nutrients ; 13(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207484

RESUMO

Alpha-glycerylphosphorylcholine (αGPC) is a precursor of acetylcholine and can increase acetylcholine concentration in the brain. In addition, αGPC has a role in cholinergic function as well as monoaminergic transmission, including dopaminergic and serotonergic systems. These monoaminergic systems are related to feelings and emotions, including motivation, reward processing, anxiety, and depression. However, the precise effects of αGPC on human feelings and emotions remain to be elucidated. In this study, we investigated changes in the subjective feelings of healthy volunteers using the KOKORO scale before and after administering αGPC. Thirty-nine volunteers participated in a single-blind, placebo-controlled design. Participants completed a KOKORO scale test to quantify self-reported emotional states, three times each day for two weeks preceding treatment and then for a further two weeks while self-administering treatment. αGPC treatment show a tendency to increase motivation during the intervention period. Furthermore, motivation at night was significantly higher in the αGPC group than in the placebo group (p < 0.05). However, αGPC did not show any effects on anxiety. These data suggest that αGPC can be used to increase motivation in healthy individuals.


Assuntos
Glicerilfosforilcolina/farmacologia , Motivação/efeitos dos fármacos , Adulto , Ansiedade , Encéfalo , Depressão , Dopamina/farmacologia , Emoções/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Recompensa , Método Simples-Cego , Adulto Jovem
19.
Sci Rep ; 11(1): 13784, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215784

RESUMO

Statewide legislation has increased public access to high-potency cannabis flower and concentrates, yet federal restrictions limit researchers' access to relatively low-potency whole-plant cannabis. The goal of this study was to examine the acute effects of high-potency cannabis on cognition using a novel methodology. We further sought to compare cognitive effects of high-potency cannabis flower with and without cannabidiol (CBD), as well as cannabis concentrates to cannabis flower. 80 cannabis users were randomly assigned to stay sober or use their funds to purchase one of three high-potency cannabis products: (1) high-potency flower (≥ 20% THC) without CBD, (2) high-potency flower with CBD, (3) high-potency concentrates (≥ 60% THC) with CBD. Participants were observed over Zoom videoconferencing while inhaling their product or remaining sober and then were administered tests of everyday life memory (prospective, source, temporal order, and false memory) and decision making (risky choice framing, consistency in risk perception, resistance to sunk cost, and over/under confidence) over Zoom. High-potency cannabis flower with CBD impaired free recall, high-potency flower without CBD and concentrates had detrimental effects on source memory, and all three products increased susceptibility to false memories. CBD did not offset impairments and concentrates were self-titrated producing comparable intoxication and impairment as flower.


Assuntos
Canabidiol/administração & dosagem , Cognição/efeitos dos fármacos , Tomada de Decisões/efeitos dos fármacos , Memória/efeitos dos fármacos , Adulto , Canabidiol/química , Cannabis/química , Cognição/fisiologia , Feminino , Flores/química , Alucinógenos/administração & dosagem , Humanos , Masculino , Fumar Maconha/efeitos adversos , Motivação/efeitos dos fármacos , Adulto Jovem
20.
J Neurosci ; 41(32): 6946-6953, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34230105

RESUMO

Motivational deficits characterized by an unwillingness to overcome effortful costs are a common feature of neuropsychiatric and neurologic disorders that are insufficiently understood and treated. Dopamine (DA) signaling in the nucleus accumbens (NAc) facilitates goal-seeking, but how NAc DA release encodes motivationally salient stimuli to influence effortful investment is not clear. Using fast-scan cyclic voltammetry in male and female mice, we find that NAc DA release diametrically responds to cues signaling increasing cost of reward, while DA release to the reward itself is unaffected by its cost. Because endocannabinoid (eCB) signaling facilitates goal seeking and NAc DA release, we further investigated whether repeated augmentation of the eCB 2-arachidonoylglycerol with a low dose of a monoacylglycerol lipase (MAGL) inhibitor facilitates motivation and DA signaling without the development of tolerance. We find that chronic MAGL treatment stably facilitates goal seeking and DA encoding of prior reward cost, providing critical insight into the neurobiological mechanisms of a viable treatment for motivational deficits.SIGNIFICANCE STATEMENT Decades of work has established a fundamental role for dopamine neurotransmission in motivated behavior and cue-reward learning, but how dopaminergic encoding of cues associates with motivated action has remained unclear. Specifically, how dopamine neurons signal future and prior reward cost, and whether this can be modified to influence motivational set points is not known. The current study provides important insight into how dopamine neurons encode motivationally relevant stimuli to influence goal-directed action and supports cannabinoid-based therapies for treatment of motivational disorders.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Endocanabinoides/metabolismo , Motivação/fisiologia , Núcleo Accumbens/fisiologia , Recompensa , Animais , Sinais (Psicologia) , Dopamina , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/farmacologia , Motivação/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA